

Data Sheet : F-RFoF-6GHZ-Rx

6GHz RF over Fiber - Receiver

Analog RFoF optical Transmitter is used to convert RF signals to optical signals that can be sent and carried over long distances of fiber optic cable.

The Optical Receiver converts them back to an RF signal. The two units are connected through 1 single mode fiber up to 40Km.

RF over Fiber modules (RFoF) are commonly used in L-band, S-band satellite, radio telescopes, RF antennas distribution, broadcasting audio, and video, timing synchronization and GPS applications and other telecommunications.

It's very easy and cost effective to extend a signal from any antenna, Modulator or RF instrument, point to point or multipoint to multipoint using fiber optic splitters.

Features:

- Supper-Mini size : 31.3mm*17mm*10mm (L*W*H)
- Low power consumption
- Wide operating frequency from 10MHz to 12GHz
- Flat frequency response
- Single +5V Power supply
- Have optical power monitoring function
- Excellent EMI/EMC design
- Integrated broadband amplifier(optional)

Applications

- WiMAX / 4G / 5G
- Satellite communications
- Mobile backhaul
- GPS signal transport
- All-Digital QAM network
- Data and video distribution
- Distributed antenna system

Specifications:

Parameter	Symbol	Condition	Min.	Max.	Unit
Operating Case Temperature	Topr		-20	+70	°C
Storage Temperature	Tstg		-40	+85	°C
DC Operating Voltage	Vd	+5V Pin	+4.7	+5.5	V
Saturation Input Optical Power	Ps	CW		10	mW
Relative Humidity	Hr			95	%
Pressure	Pr		86	106	kPa
ESD		Human body model		Class 1A	

Parameter	Test Condition		MIN.	TYP.	MAX.	Unit	
	RSC		0.01 ~ 3				
Frequency Range	RCC		0.01 ~ 6			GHz	
	RXC		0.01 ~ 12				
Optical Wavelength			800~1650			nm	
		Tx without amplifier	-11	-11 -3		dB	
	RSC	Rx with amplifier	-28		l		
		Tx without amplifier Rx		-24			
Gain ⁽¹⁾		without amplifier					
	RCC	Tx without amplifier	-11	-3			
		Rx with amplifier					
		Tx without amplifier	-30	-26			
		Rx without amplifier		20			
	RXC	Tx without amplifier Rx	-30	-26			
		without amplifier					
Pipple of Passband (1)(2)	RSC	100MHz ~ 3GHz		±1.2	<u>+2</u>	dD	
	RCC	100MHz ~ 6GHz		±1.5	<u>+2.2</u>	uВ	
	RXC	100MHz ~ 12GHz		±2.0	±2.5		
Input Optical Power	+25°C				10	dBm	
Back Reflection				35		dB	
PD Responsivity	1310nm		0.7	0.8		mA/mW	
	1550nm		0.7	0.85			
	RSC	100MHz ~ 3GHz		-12	-8		
RF Return loss (50 Ω)	RCC	100MHz ~ 6GHz		-10	-7	dB	
	RXC	100MHz ~ 12GHz		-10	-5		
Operating Current	with amplifier, RSC/RCC			90	120	mA	
- I 9	without amplifier, RSC/RCC/RXC			7	10		
Operating Voltage	+5V pin		+4.8	+5	+5.2	VDC	

Connector

Туре	Connector
RF	SMA (50Ω), Female
Optical	FC/APC ⁽¹⁾
Optical Fiber Type	SMF-28(Standard)
Power	EMI Low Pass Filter, Feed Through Capacitor

Note (1): Other type optical connector available upon request.

PIN Function

Optical Receiver Top View

PIN	Name	Direction	Note			
1	+5V	I	+5V DC Power			
2	GND	I	GND			
2 00		0	Received Optical Power Monitor,			
5	UP		0	0	0	The Voltage of OP See Below Explanation

The OP voltage (**Vop**, unit: V) VS received optical power (**Pop**, unit: mW) follow the formula:

Vop≈ D*Pop

The **D** factor defined as detection factor in V/mW unit. The typical range of **D** is from 0.25 V/mW to 0.5 V/mW. For example, **D**=0.375 V/mW, the OP voltage (**Vop**) VS received optical power(**Pop**) as shown in the table below:

Vop (V)	Pop (mW)
3.75	10
3.375	9
3	8
2.625	7
2.25	6
1.875	5
•••	•••
0	0

The user can input the known optical power **Pop** and detect the **Vop** voltage, and then calculate the

approximate value of the **D** factor of an optical receiver by the formula $Vop \approx D^*Pop$. In this case, the obtained **D** factor and Vop can be used to estimate the optical power received by the optical receiver in practical applications.

ESD Protection

The F-RFoF-6GHZ-Txmodules have electrostatics sensitivity devices, so the user has to do a good job of ESD protection when using the modules.

Heat Dissipation Requirements :

In order to ensure proper performance, heat sinking and heat removal must be provided by the user to limit maximum temperature receiver module. The bottom of the module is the preferred heat dissipation surface.

Mechanical (unit: mm)

Note: When using the module, the bottom of the module needs to be fully cooled.

Drawing:

6GHz Mini Analog Optical Transmitter & Receiver

Model Selection:

F-RFoF-6GHZ-TX RFoF -RF over fiber 6Ghz optical Transmitter

F-RFoF-6GHZ-RX RFoF -RF over fiber 6Ghz optical Receiver