32 mW CATV RF Over Fiber Tx 45-870 MHz

Qty: 0
Availability: Check availability Condition: new
Shipping: starting at $10 Warranty: 2Yrs
ask about product
send request
Description Features Drawings Specification Q&A Documents Support

RF over Fiber Tx - 32mW Output 45-870 MHz

1310nm - 32mW fiber optic transmitter for Television RF (Radio Frequencies) from 45-870 MHz.  Directly converts any incoming RF signal within this band to optical RF.  Transports all channels and programs over one fiber.  Can be used for point to point, or combined with PLC couplers and fiber optic splitters for point to multipoint applications.  Outputs Industry standard RFoG (RF over Glass) signals that can be accepted by most fiber optic RF receivers from other manufacturers.  Easy to read front panel LCD provides information and alarm data, and simplifies configuration.  This system features a highly linear DFB laser with automatic adjustment circuitry with Automatic Gain Control.  For added reliability, a second internal Power Supply Unit is available as an option.



Transmitter can be used with any or Thor Fiber optical RF receivers


 • 32 mW Optical Power Output from sensor feedback controlled laser system
 • Transports entire 45-870 MHz band even with full channel linups
 • Create high security "Fiber Breaks" to eliminate coax signal return path
 • Automatic Gain Control (AGC) manages RF level with no adjustment needed
 • Compatible with all Thor RFoG CATV series optical receiver systems

IMPORTANT NOTE*** (it is very important to interface our unit with SC/APC - Angle Polished Connector to avoid any light reflections.

If your fiber is terminated with the  SC, ST, FC /PC flat connector, you need to use an optical jumper from PC type to SC/APC for proper conversion. 

*All Specifiactions Subject to Change Without Notice
  • Input

1x Type-F connector - 75 Ohm

  • Optical Wavelength
  • Line Width:
< 1 MHz   FWHM
  • Extinction Ratio
>20 dB XP
  • Equivalent Noise Intensity
< -160 dB/Hz
  • Output Power
32 mW
  • Return Loss
>55 dB
  • Optical Connector

SC/APC - Angle Polished

IMPORTANT NOTE*** (it is very important to interface our unit with SC/APC - Angle Polished Connector to avoid any light reflections.

If your fiber is terminated with the  SC, ST, FC /PC flat connector, you need to use an optical jumper from PC type to SC/APC for proper conversion. 

  • RF Power Level
11-29 dBmV AGC Managed
  • Flatness
<± 0.75    45 - 862 MHz
  • SBC Restrain
>17 dBm
  • CNR
>50 dB @ 10km fiber length
  • CTB
< -63 dB
  • CSO
< -57 dB
  • Dimensions
19 x 10 x 1.75 inch
  • Weight
2.5 kg
  • Operating Temperature
0 - 45 ?
Question and Answers
1) Are these all point to point with single mode fiber in place? https://thorbroadcast.com/products/cable-tv-catv-rf-45-900mhz This is our page of dedicated CATV frequency band Transmitters and Receivers, The rackmount OTx and Mini or Rackmount Receiver sets are the most popular because of their longstanding history of durability 2 points I need to make off the bat, RF can only be put on Singlemode Fiber, Putting it on multimode is impossible; the signal deteriorates at a massive level because of the wide core creating reflections, no one in the world makes gear like that because theoretically, it is impossible Second we can use distance to make approximate guesses at what power optical OTx you'll need, if they're short with minimal patch panels we can guess. If they are longer runs I would hope you can get an OTDR reading of the optical loss in the Fiber. RF on fiber needs to be dedicated, and optical budget is what we work around to decide what power laser you need. 2) So at this juncture because of your short runs, I would go with a single high power OTx; use an optical coupler and mini receivers. This basic diagram shows you a simple layout; single Transmitter; optical coupler which eats a lot of power, and you can run your CATV Clear QAM into the transmitter and get cable everywhere else Yes this equipment carries the entire echelon of CATV DVB-C RF modulation; meaning it carries 45-870Mhz or approximately channels 2-135. https://thorbroadcast.com/product/1-x-2-to-1-x-128-fiber-optic-couplers.html/224 This page shows you how optical couplers eat power, the chart at the bottom is what we use with our units; other companies might vary The coupler essentially dictates how powerful of an OTx you need. What I suggest you do is make sure of exactly how many end locations you have; then we work backward, Couplers come in 1x2 1x4 1x8 etc so if you have 4 runs then need to add a 5th it really isn't simple. So planning ahead is crucial to future proof you don't need to replace the coupler and OTx
So you're on the right track. 
Right now you're only required to send the signal to two buildings, but you will need to expand to 16 buildings?
If you think at most the run might be about 2 miles then hopefully the fiber installed has very mild loss, you should be fine with a 1310nm 32mW OTx. 
1550nm is only recommended with the use of an EDFA that is used to distribute the signal to dozens of end locations. 
In your case having a maximum of 16 endpoints with minimal distance is not a good reason to use 1550nm.
I would suggest this as a BOM:

F-RF-1310-TX-32mW transmitter

F-RF-RX-RM receiver


F-PLC-1x16-SC/APC optical splitter



Since the transmitters and receivers, all use SC/APC; I would make sure the PLC Coupler follows suit to minimize any reflections. 

Similar products:

1550nm Externaly Modulated CATV RF Transmitter - Analog or QAM or ATSC CATV RF Over Fiber

1550nm DWDM Externally Modulated Optical Transmitter is an ideal solution for long-distance Analog RF or Digital QAM /ATSC from 45-1000Mhz over single mode fiber. It has much better dispersion and stability than a 1550nm internally modulated fiber optic transmitter, If your fiber distance exceeds more than 30km this is the perfect product for your application.

FTTx Headend

Complete design of RF forward transmitter and EDFA systems for fiber to the home systems.

Contact Us

Thor Broadcast Sales

Customer Service/ Support